LOGICOIL - multi-state prediction of coiled-coil oligomeric state

نویسندگان

  • Thomas L. Vincent
  • Peter J. Green
  • Derek N. Woolfson
چکیده

MOTIVATION The coiled coil is a ubiquitous α-helical protein-structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, the coiled coil is readily recognized via a conspicuous heptad repeat of hydrophobic and polar residues. However, structurally coiled coils are more complicated, existing in a wide range of oligomer states and topologies. As a consequence, predicting these various states from sequence remains an unmet challenge. RESULTS This work introduces LOGICOIL, the first algorithm to address the problem of predicting multiple coiled-coil oligomeric states from protein-sequence information alone. By covering >90% of the known coiled-coil structures, LOGICOIL is a net improvement compared with other existing methods, which achieve a predictive coverage of ∼31% of this population. This leap in predictive power offers better opportunities for genome-scale analysis, and analyses of coiled-coil containing protein assemblies. AVAILABILITY LOGICOIL is available via a web-interface at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code, training sets and supporting information can be downloaded from the same site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices.

The coiled-coil, which consists of two or more α-helices winding around each other, is a ubiquitous and the most frequently observed protein-protein interaction motif in nature. The coiled-coil is known for its straightforward heptad repeat pattern and can be readily recognized based on protein primary sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interact...

متن کامل

The evolution and structure prediction of coiled coils across all genomes.

Coiled coils are α-helical interactions found in many natural proteins. Various sequence-based coiled-coil predictors are available, but key issues remain: oligomeric state and protein-protein interface prediction and extension to all genomes. We present SpiriCoil (http://supfam.org/SUPERFAMILY/spiricoil), which is based on a novel approach to the coiled-coil prediction problem for coiled coils...

متن کامل

ACCORD: an assessment tool to determine the orientation of homodimeric coiled-coils

The coiled-coil (CC) domain is a very important structural unit of proteins that plays critical roles in various biological functions. The major oligomeric state of CCs is a dimer, which can be either parallel or antiparallel. The orientation of each α-helix in a CC domain is critical for the molecular function of CC-containing proteins, but cannot be determined easily by sequence-based predict...

متن کامل

Disruption of Bcr-Abl coiled coil oligomerization by design.

Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coi...

متن کامل

New component of ESCRT-I regulates endosomal sorting complex assembly

The endosomal sorting complex required for transport (ESCRT) complexes play a critical role in receptor down-regulation and retroviral budding. Although the crystal structures of two ESCRT complexes have been determined, the molecular mechanisms underlying the assembly and regulation of the ESCRT machinery are still poorly understood. We identify a new component of the ESCRT-I complex, multives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2013